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1. .. intro ..
The spectral density of fractional Gaussian noise (“fGn”) with Hurst parameter H ∈ (0, 1) is
(Beran (1986, 1994))

fH(λ) = A(λ, H)
(
|λ|−2H−1 + B(λ, H)

)
, (1)

for λ ∈ [−π, π], where A(λ, H) == 2 sin(πH) Γ(2H + 1) (1 − cos λ), and

B(λ, H) =
∞∑

j=1

(
(2πj + λ)−(2H+1) + (2πj − λ)−(2H+1)+

)
. (2)

For the Whittle estimator of H and also other purposes, its advantageous to be able to
evaluate fH(λi) efficiently for a whole vector of λi, typically Fourier frequencies λi = 2πi/n,
for i = 1, 2, . . . , ⌊(n − 1)/2⌋. Such evaluation is problematic because of the infinite sum for
B(λ, H) in (2).
Traditionally, e.g., already in Appendix.... of Beran (1994), the infinite sum ∑∞

j=1 had been
replaced by ∑200

j — which was still not very efficient and not extremely accurate. In our R
package longmemo, we now provide the function B.specFGN(λ, H) to compute B(λ, H), using
several ways to compute the infinite sum approximately, e.g., for H = 0.75 and n = 500, i.e.,
at 250 Fourier frequencies,
> require("longmemo")
> fr <- .ffreq(500)
> B.1 <- B.specFGN(fr, H = 0.75, nsum = 200, k.approx=NA)
> B.xct <- B.specFGN(fr, H = 0.75, nsum = 10000, k.approx=NA)
> all.equal(B.xct, B.1)

[1] "Mean relative difference: 0.0001243095"

which means that the 200 term approximation is accurate to 4 decimal digits for H = .75
but the accuracy is smaller for smaller H.
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For this reason, Paxson (1997) derived formulas for fast and stilly quite accurate approxima-
tions of B(λ, H), noting that B(λ, H) = ∑∞

j=1 f(j; λ, H) for

f(x; λ, H) = (2πx + λ)−(2H+1) + (2πx − λ)−(2H+1), (3)

and the fact that ∑∞
j=1 f(j) is a Riemann sum approximation of

∫ ∞
0 f(x) dx or

∫ ∞
1 f(x) dx.

> fB <- function(x, lambda, H) {
u <- 2 * pi * x
h <- -(2 * H + 1)
(u + lambda)^h + (u - lambda)^h

}

Now its clear that f(x) cannot be computed (or “is infinite”) at x = 0, and more specifically,
f(x) tends to ∞ when x → λ

2π , as in the second term of f , 2πx−λ only remains positive when
2πx > λ. This is always fulfilled for xin{1, 2, . . . }, as λ < π, but is problematic when consid-
ering

∫ b
0 f(x) dx as above. Some illustrations of the function f(x; λ, H) and its “pole” at λ

2π :
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So, very clearly, Paxson’s first formula, using
∫ 1

0 f(x) dx is not feasible, as f(x) is not defined
(or defined as ∞) for x ≤ λ/(2π).
However, his generalized formula, “(7), p. 15”,

∞∑
i=1

fi ≈
k∑

j=1
fj + 1

2

∫ k+1

k
f(x) dx +

∫ ∞

k+1
f(x) dx, (4)

clearly is usable for k ≥ 1 (but not for k = 0, contrary to what he suggests). Indeed, with
B.specFGN(λ, H, k.approx), we now provide the result of applying approximation (4) to the
infinite sum for B(λ, H) in (2).
Paxson ended the k = 3 approximation which he further improved considerably, empirically,
by numerical comparison (and least squares fitting) with the “accurate” formula using nsum
= 10′000 terms. In the following section, we propose another improvement over Paxson’s
original idea:

2. Better approximations using the Euler–Maclaurin formula
Copied straight from http://en.wikipedia.org/wiki/Euler-Maclaurin_formula :
If n is a natural number and f(x) is a smooth, i.e., sufficiently often differentiable function
defined for all real numbers x between 0 and n, then the integral

I =
∫ n

0
f(x) dx (5)

http://en.wikipedia.org/wiki/Euler-Maclaurin_formula
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can be approximated by the sum (or vice versa)

S = 1
2f(0) + f(1) + · · · + f(n − 1) + 1

2f(n)

(see trapezoidal rule). The Euler–Maclaurin formula provides expressions for the difference
between the sum and the integral in terms of the higher derivatives f (k) at the end points of
the interval 0 and n. Explicitly, for any natural number p, we have

S − I =
p∑

k=2

Bk

k!
(
f (k−1)(n) − f (k−1)(0)

)
+ R

where B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B6 = 1/42, B8 = −1/30, . . . are the
Bernoulli numbers, and R is an error term which is normally small for suitable values of
p. (The formula is often written with the subscript taking only even values, since the odd
Bernoulli numbers are zero except for B1.)
Note that

−B1(f(n) + f(0)) = 1
2(f(n) + f(0)).

Hence, we may also write the formula as follows:
n∑

i=0
f(i) =

∫ n

0
f(x) dx − B1(f(n) + f(0)) +

p∑
k=1

B2k

(2k)!
(
f (2k−1)(n) − f (2k−1)(0)

)
+ R. (6)

.............
In the context of computing asymptotic expansions of sums and series, usually the most useful
form of the Euler–Maclaurin formula is

b∑
n=a

f(n) ∼
∫ b

a
f(x) dx + f(a) + f(b)

2 +
∞∑

k=1

B2k

(2k)!
(
f (2k−1)(b) − f (2k−1)(a)

)
,

where a and b are integers. Often the expansion remains valid even after taking the limits
a → −∞ or b → +∞, or both. In many cases the integral on the right-hand side can be
evaluated in closed form in terms of elementary functions even though the sum on the left-
hand side cannot.
(end of citation from Wikipedia)

— —

3. Session Information

> toLatex(sessionInfo())

• R version 4.4.1 (2024-06-14), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=C, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C
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• Time zone: Etc/UTC

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.1 LTS

• Matrix products: default

• BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3

• LAPACK:
/usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so ;
LAPACK version3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: longmemo 1.1-3

• Loaded via a namespace (and not attached): buildtools 1.0.0, compiler 4.4.1,
knitr 1.48, maketools 1.3.0, sfsmisc 1.1-19, sys 3.4.2, tools 4.4.1, xfun 0.47

4. Conclusion
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