
Package: CLA (via r-universe)
August 29, 2024

Version 0.96-3

Date 2024-07-29

Title Critical Line Algorithm in Pure R

Depends R (>= 3.6.0)

Imports stats, grDevices, graphics, utils

Suggests fGarch, FRAPO, Matrix, sfsmisc

Description Implements 'Markowitz' Critical Line Algorithm ('CLA') for
classical mean-variance portfolio optimization, see Markowitz
(1952) <doi:10.2307/2975974>. Care has been taken for
correctness in light of previous buggy implementations.

License GPL (>= 3) | file LICENSE

Encoding UTF-8

URL https://gitlab.math.ethz.ch/maechler/CLA/

NeedsCompilation no

Author Yanhao Shi [aut], Martin Maechler [aut, cre]
(<https://orcid.org/0000-0002-8685-9910>)

Maintainer Martin Maechler <maechler@stat.math.ethz.ch>

Date/Publication 2024-07-29 15:50:09 UTC

Repository https://mmaechler.r-universe.dev

RemoteUrl https://github.com/cran/CLA

RemoteRef HEAD

RemoteSha 2d6f7fbc571427e008aac28afc0be70643586b9a

Contents
CLA . 2
findMu . 4
findSig . 5
MS . 7
muS.10ex . 8

1

https://doi.org/10.2307/2975974
https://gitlab.math.ethz.ch/maechler/CLA/
https://orcid.org/0000-0002-8685-9910

2 CLA

muS.sp500 . 9
muSigmaGarch . 10
plot.CLA . 11

Index 13

CLA Critical Line Algorithm for mean-variance optimal portfolio

Description

The Critical Line Algorithm was first proposed by Markowitz(1987) to solve the mean-variance
optimal portfolio problem.

We solve the problem with “box” constraints, i.e., allow to specify lower and upper bounds (via lB
and uB) for each asset weight.

Here we provide a pure R implementation, quite fine tuned and debugged compared to earlier ones.

Usage

CLA(mu, covar, lB, uB,
check.cov = TRUE, check.f = TRUE,
tol.lambda = 1e-07,
give.MS = TRUE, keep.names = TRUE, trace = 0)

Arguments

mu numeric vector of length n containing the expected return E[Ri] for 1 = 1, 2, . . . , n.

covar the n× n covariance matrix of the returns, must be positive definite.

lB, uB vectors of length n with lower and upper bounds for the asset weights.

check.cov logical indicating if the covar matrix should be checked to be positive definite.

check.f logical indicating if a warning should be produced when the algorithm cannot
produce a new (smaller) lambda even though there are still free weights to be
chosen.

tol.lambda the tolerance when checking for lambda changes or being zero.

give.MS logical indicating if MS() should be computed (and returned) as well.

keep.names logical indicating if the weights_set matrix should keep the (asset) names(mu).

trace an integer (or logical) indicating if and how much diagnostic or progress out-
put should be produced.

Details

The current implementation of the CLA is based (via Norring’s) on Bailey et al.(2013). We have
found buglets in that implementation which lead them to introduce their “purge” routines (purgeNumErr,
purgeExcess), which are no longer necessary.

Even though this is a pure R implementation, the algorithm is quite fast also when the number of
assets n is large (1000s), though that depends quite a bit on the exact problem.

CLA 3

Value

an object of class "CLA" which is a list with components

weights_set a n×m matrix of asset weights, corresponding to the m steps that the CLA has
completed or the m “turning points” it has computed.

free_indices a list of length m, the k-th component with the indices in 1, . . . , n of those
assets whose weights were not at the boundary after ...

gammas numeric vector of length m of the values γk for CLA step k, k = 1, . . . , n.

lambdas numeric vector of length m of the Lagrange parameters λk for CLA step k,
k = 1, . . . , n.

MS_weights the µ(W) and σ(W) corresponding to the asset weights weights_set, i.e., sim-
ply the same as MS(weights_set = weights_set, mu = mu, covar = covar).

Note

The exact results of the algorithm, e.g., the assets with non-zero weights, may slightly depend on the
(computer) platform, e.g., for the S&P 500 example, differences between 64-bit or 32-bit, version
of BLAS or Lapack libraries etc, do have an influence, see the R script ‘tests/SP500-ex.R’ in the
package sources.

Author(s)

Alexander Norring did the very first version (unpublished master thesis). Current implementation:
Yanhao Shi and Martin Maechler

References

Markowitz, H. (1952) Portfolio selection, The Journal of Finance 7, 77–91; doi:10.2307/2975974.

Markowitz, H. M. (1987, 1st ed.) and Markowitz, H. M. and Todd, P. G. (2000) Mean-Variance
Analysis in Portfolio Choice and Capital Markets; chapters 7 and 13.

Niedermayer, A. and Niedermayer, D. (2010) Applying Markowitz’s Critical Line Algorithm, in J.
B. Guerard (ed.), Handbook of Portfolio Construction, Springer; chapter 12, 383–400; doi:10.1007/
9780387774398_12.

Bailey, D. H. and López de Prado, M. (2013) An open-source implementation of the critical-line
algorithm for portfolio optimization, Algorithms 6(1), 169–196; doi:10.3390/a6010169,

Yanhao Shi (2017) Implementation and applications of critical line algorithm for portfolio opti-
mization; unpublished Master’s thesis, ETH Zurich.

See Also

MS; for plotting CLA results: plot.CLA.

https://doi.org/10.2307/2975974
https://doi.org/10.1007/978-0-387-77439-8_12
https://doi.org/10.1007/978-0-387-77439-8_12
https://doi.org/10.3390/a6010169

4 findMu

Examples

data(muS.sp500)
Full data taking too much time for example
set.seed(47)
iS <- sample.int(length(muS.sp500$mu), 24)

CLsp.24 <- CLA(muS.sp500$mu[iS], muS.sp500$covar[iS, iS], lB=0, uB=1/10)
CLsp.24 # using the print() method for class "CLA"

plot(CLsp.24)

if(require(Matrix)) { ## visualize how weights change "along turning points"
show(image(Matrix(CLsp.24$weights_set, sparse=TRUE),

main = "CLA(muS.sp500 <random_sample(size=24)>) $ weights_set",
xlab = "turning point", ylab = "asset number"))

}

A 3x3 example (from real data) where CLA()'s original version failed
and 'check.f = TRUE' produces a warning :
mc3 <- list(

mu = c(0.0408, 0.102, -0.023),
cv = matrix(c(0.00648, 0.00792, 0.00473,

0.00792, 0.0334, 0.0121,
0.00473, 0.0121, 0.0793), 3, 3,

dimnames = list(NULL,
paste0(c("TLT", "VTI","GLD"), ".Adjusted"))))

rc3 <- with(mc3, CLA(mu=mu, covar=cv, lB=0, uB=1, trace=TRUE))

findMu Find mu(W) and W, given sigma(W) and CLA result

Description

Find µ(W) and W , given σ(W) and CLA result.

Usage

findMu(Sig0, result, covar, tol.unir = 1e-06, equal.tol = 1e-06)

Arguments

Sig0 numeric vector of σ(W) values.
result a list with components MS_weight and weights_set as resulting from CLA().
covar the same n× n covariance matrix (of asset returns) as the argument of CLA().
tol.unir numeric tolerance passed to uniroot.
equal.tol numeric tolerance to be used in all.equal(.., tolerance = equal.tol) in

the check to see if the µ of two neighbouring turning points are equal.

findSig 5

Value

a list with components

Mu numeric vector of same length, say M , as Sig0.

weight numeric n×M matrix of weights.

References

Master thesis, p.33

See Also

findSig, CLA, MS.

Examples

data(muS.sp500)
Full data taking too much time for example
if(getRversion() >= "3.6") .Rk <- RNGversion("3.5.0") # for back compatibility & warning
set.seed(2016)
iS <- sample.int(length(muS.sp500$mu), 17)
if(getRversion() >= "3.6") do.call(RNGkind, as.list(.Rk)) # revert
cov17 <- muS.sp500$covar[iS, iS]
CLsp.17 <- CLA(muS.sp500$mu[iS], covar=cov17, lB=0, uB = 1/2)
CLsp.17 # 16 turning points
summary(tpS <- CLsp.17$MS_weights[,"Sig"])
str(s0 <- seq(0.0186, 0.0477, by = 0.0001))
mu.. <- findMu(s0, result=CLsp.17, covar=cov17)
str(mu..)
stopifnot(dim(mu..$weight) == c(17, length(s0)))
plot(s0, mu..$Mu, xlab=quote(sigma), ylab = quote(mu),

type = "o", cex = 1/4)
points(CLsp.17$MS_weights, col = "tomato", cex = 1.5)

findSig Find sigma(W) and W, given mu(W) and CLA result

Description

Find σ(W) and W , given µ(W) and CLA result.

Usage

findSig(Mu0, result, covar, equal.tol)

6 findSig

Arguments

Mu0 numeric vector of µ(W) values.

result a list with components MS_weight and weights_set as resulting from CLA().

covar the same n× n covariance matrix (of asset returns) as the argument of CLA().

equal.tol numeric tolerance to be used in all.equal(.., tolerance = equal.tol) in
the check to see if the µ of two neighbouring turning points are equal.

Value

a list with components

Sig numeric vector of same length, say M , as Mu0.

weight numeric n×M matrix of weights.

References

Master thesis, p.33

See Also

findMu, CLA, MS.

Examples

data(muS.sp500)
Full data taking too much time for example: Subset of n=21:
if(getRversion() >= "3.6") .Rk <- RNGversion("3.5.0") # for back compatibility & warning
set.seed(2018)
iS <- sample.int(length(muS.sp500$mu), 21)
if(getRversion() >= "3.6") do.call(RNGkind, as.list(.Rk)) # revert
cov21 <- muS.sp500$covar[iS, iS]
CLsp.21 <- CLA(muS.sp500$mu[iS], covar=cov21, lB=0, uB = 1/2)
CLsp.21 # 14 turning points
summary(tpM <- CLsp.21$MS_weights[,"Mu"])
str(m0 <- c(min(tpM),seq(0.00205, 0.00525, by = 0.00005), max(tpM)))
sig. <- findSig(m0, result=CLsp.21, covar=cov21)
str(sig.)
stopifnot(dim(sig.$weight) == c(21, length(m0)))
plot(sig.$Sig, m0, xlab=quote(sigma), ylab = quote(mu),

type = "o", cex = 1/4)
points(CLsp.21$MS_weights, col = "tomato", cex = 1.5)
title("Efficient Frontier from CLA()")
mtext("findSig() to interpolate between turning points", side=3)

MS 7

MS Means (Mu) and Standard Deviations (Sigma) of the “Turning Points”
from CLA

Description

Compute the vectors of means (µi) and standard deviations (sigmai), for all the turning points of a
CLA result.

Usage

MS(weights_set, mu, covar)

Arguments

weights_set numeric matrix (n × m) of optimal asset weights W = (w1, w2, . . . , wm), as
resulting from CLA().

mu expected (log) returns (identical to argument of CLA()).

covar covariance matrix of (log) returns (identical to argument of CLA()).

Details

These are trivially computable from the CLA()’s result. To correctly interpolate this, “hyperbolic”
interpolation is needed, provided by the findSig and findMu functions.

Value

a list with components

Sig numeric vector of length m of standard deviations, σ(W).

Mu numeric vector of length m of means µ(W).

Author(s)

Yanhao Shi

See Also

CLA.

Examples

The function is quite simply
MS
and really an auxiliary function for CLA().

TODO: add small (~12 assets) example

8 muS.10ex

muS.10ex 10 Assets Example Data from Markowitz & Todd

Description

The simple example Data of Markowitz and Todd (2000); used for illustrating the CLA; reused in
Bailey and López de Prado (2013).

Usage

data("muS.10ex")

Format

A list with two components,

mu Named num [1:10] 1.175 1.19 0.396 1.12 0.346 ...
names : chr [1:10] "X1" "X2" "X3" "X4" ...

covar num [1:10, 1:10] 0.4076 0.0318 0.0518 0.0566 0.033 ...

Source

From ‘http://www.quantresearch.info/CLA_Data.csv.txt’ (URL no longer working, Aug.2020!)
by López de Prado.

References

Markowitz, H. M. (1987, 1st ed.) and Markowitz, H. M. and Todd, P. G. (2000) Mean-Variance
Analysis in Portfolio Choice and Capital Markets, page 335.

Bailey, D. H. and López de Prado, M. (2013) An open-source implementation of the critical-line
algorithm for portfolio optimization, Algorithms 6(1), 169–196; doi:10.3390/a6010169, p. 16f.

Examples

data(muS.10ex)
str(muS.10ex)

CLA.10ex <- with(muS.10ex, CLA(mu, covar, lB=0, uB=1))
if(require("Matrix"))

drop0(zapsmall(CLA.10ex$weights_set))
The results, summarized, as in Bayley and López de Prado (Table 2, p.18) :
with(CLA.10ex, round(cbind(MS_weights[,2:1], lambda=lambdas, t(weights_set)), 3))

CLA.10ex.1c <- with(muS.10ex, CLA(mu, covar, lB=1/100, uB=1))
round(CLA.10ex.1c$weights_set, 3)

https://doi.org/10.3390/a6010169

muS.sp500 9

muS.sp500 Return Expectation and Covariance for "FRAPO"s SP500 data

Description

If Rj,t are the basically the scale standardized log returns for j = 1, 2, . . . , 476 of 476 stocks from
S&P 500, as from SP500, then muj = E[Rj,∗] somehow averaged over time; actually as predicted
by muSigma() at the end of the time period, and Σj,k = Cov(Rj , Rk) are estimated covariances.

These are the main “inputs” needed for the CLA algorithm, see CLA.

Usage

data("muS.sp500")

Format

A list with two components,

mu Named num [1:476] 0.00233 0.0035 0.01209 0.00322 0.00249 ...
names : chr [1:476] "A" "AA" "AAPL" "ABC" ...

covar num [1:476, 1:476] 0.001498 0.000531 0.000536 ...

Source

It is as simple as this:

data(SP500, package="FRAPO")
system.time(muS.sp500 <- muSigmaGarch(SP500)) # 26 sec. (lynne, 2017)

See Also

muSigmaGarch() which was used to construct it.

Examples

data(muS.sp500)
str(muS.sp500)

10 muSigmaGarch

muSigmaGarch Compute (mu, Sigma) for a Set of Assets via GARCH fit

Description

Compute (mu, Sigma) for a set of assets via a GARCH fit to each individual asset, using package
fGarch’s garchFit().

Usage

muSigmaGarch(x, formula = ~garch(1, 1), cond.dist = "std", trace = FALSE,
...)

Arguments

x numeric matrix or data frame (T × d) of log returns of d assets, observed on a
common set of T time points.

formula optional formula for garchFit.

cond.dist the conditional distribution to be used for the garch process.

trace logical indicating if some progress of garchFit() should printed to the console.

... optional arguments to cor, i.e., use or method.

Value

a list with components

mu numeric vector of length n of mean returns (= E[Ri]).

covar covariance matrix (n× n) of the returns.

See Also

muS.sp500 which has been produced via muSigmaGarch. CLA which needs (mu, covar) as crucial
input.

Examples

if(requireNamespace("FRAPO")) {
data(NASDAQ, package = "FRAPO")
12 randomly picked stocks from NASDAQ data
iS <- if(FALSE) { ## created (w/ warning, in new R) by
RNGversion("3.5.0"); set.seed(17); iS <- sample(ncol(NASDAQ), 12)

} else c(341L, 2126L, 1028L, 1704L, 895L, 1181L, 454L, 410L, 1707L, 425L, 950L, 5L)
X. <- NASDAQ[, iS]
muSig <- muSigmaGarch(X.)
stopifnot(identical(names(muSig$mu), names(NASDAQ)[iS]),

identical(dim(muSig$covar), c(12L,12L)),
all.equal(unname(muSig$mu),

https://CRAN.R-project.org/package=fGarch

plot.CLA 11

c(7.97, -4.05, -14, 21.5, -5.36, -15.3,
-15.9, 11.8, -1.64, -14, 3.13, 121) / 10000,

tol = 0.0015))
}

plot.CLA Plotting CLA() results including Efficient Frontier

Description

A partly experimental plot() method for CLA() objects.

It draws the efficient frontier in the µw, σw aka (mean, std.dev.) plane.

Currently, this is quite rudimentary.
Future improvements would allow - to add the/some single asset points, - to correctly (‘hyperbol-
ically’) interpolate between turning points - add text about the number of (unique) critical points -
add option add = FALSE which when TRUE would use lines instead plot.

Usage

S3 method for class 'CLA'
plot(x, type = "o", main = "Efficient Frontier",

xlab = expression(sigma(w)),
ylab = expression(mu(w)),
col = adjustcolor("blue", alpha.f = 0.5),
pch = 16, ...)

Arguments

x a named list as resulting from CLA().

type the lines/points types used for the efficient frontier. This will become more
sophisticated, i.e., may change non-compatibly!!

main main title.

xlab, ylab x- and y- axis labels, passed to plot.default.

col, pch color and point type, passed to plot.default, but with differing defaults in this
method.

... potentially further arguments passed to plot, i.e., plot.default.

Author(s)

Martin Maechler.

See Also

CLA, plot.default.

12 plot.CLA

Examples

TODO %% Add A. Norring's small 12-asset example see --> ../TODO
---- one example is in help(CLA)

Index

∗ arith
CLA, 2
findMu, 4
findSig, 5
MS, 7

∗ datasets
muS.10ex, 8
muS.sp500, 9

∗ dplot
findSig, 5

∗ hplot
plot.CLA, 11

∗ multivariate
muSigmaGarch, 10

∗ optimize
CLA, 2
findMu, 4

all.equal, 4, 6

CLA, 2, 4–7, 9–11
class, 3
cor, 10

findMu, 4, 6, 7
findSig, 5, 5, 7

garchFit, 10

lines, 11
list, 3–7, 11
logical, 2

MS, 2, 3, 5, 6, 7
muS.10ex, 8
muS.sp500, 9, 10
muSigmaGarch, 9, 10

plot, 11
plot.CLA, 3, 11
plot.default, 11

points, 11

SP500, 9

title, 11

uniroot, 4

13

	CLA
	findMu
	findSig
	MS
	muS.10ex
	muS.sp500
	muSigmaGarch
	plot.CLA
	Index

